Complete graph
Look familiar?
A complete graph, or mystic rose, is an undirected graph where every vertex is connected to every other vertex. The symbol \(K_n\) denotes the complete graph with \(n\) vertices.
The number of edges in \(K_n\) is always exactly \(\binom{n}{2}.\) This is the total number of ways that \(2\) vertices can be chosen to make an edge. Since every possible edge is present in \(K_n\), counting them is the same as counting every single way of making an edge.
An empty graph is considered the counterpart to a complete graph.
Logic & Proofs
Integer •
Rational number •
Inequality •
Real number •
Theorem •
Proof •
Statement •
Proof by exhaustion •
Universal generalization •
Counterexample •
Existence proof •
Existential instantiation •
Axiom •
Logic •
Truth •
Proposition •
Compound proposition •
Logical operation •
Logical equivalence •
Tautology •
Contradiction •
Logic law •
Predicate •
Domain •
Quantifier •
Argument •
Rule of inference •
Logical proof •
Direct proof •
Proof by contrapositive •
Irrational number •
Proof by contradiction •
Proof by cases •
Summation •
Disjunctive normal form
Set Theory
Set •
Element •
Empty set •
Universal set •
Subset •
Power set •
Cartesian product •
String •
Binary string •
Empty string •
Set operation •
Set identity •
Set proof
Functions
Algorithms
Relations
Number Theory
Induction
Combinatorics
Graph Theory
Graph •
Walk •
Subgraph •
Regular graph •
Complete graph •
Empty graph •
Cycle graph •
Hypercube graph •
Bipartite graph •
Component •
Eulerian circuit •
Eulerian trail •
Hamiltonian cycle •
Hamiltonian path •
Tree •
Huffman tree •
Substring •
Forest •
Path graph •
Star •
Spanning tree •
Weighted graph •
Minimum spanning tree •
Greedy algorithm •
Prim's algorithm
Recursion