Empty set
The set of all things that cannot exist; the set of nothing.
The empty set, \(\emptyset\), is the one-of-a-kind set with no elements. Its cardinality is \(0\); \(|\emptyset| = 0.\) In roster notation, \(\emptyset = \{\}.\)
The empty set's logical analogue is \(0.\)
Logic & Proofs
Integer •
Rational number •
Inequality •
Real number •
Theorem •
Proof •
Statement •
Proof by exhaustion •
Universal generalization •
Counterexample •
Existence proof •
Existential instantiation •
Axiom •
Logic •
Truth •
Proposition •
Compound proposition •
Logical operation •
Logical equivalence •
Tautology •
Contradiction •
Logic law •
Predicate •
Domain •
Quantifier •
Argument •
Rule of inference •
Logical proof •
Direct proof •
Proof by contrapositive •
Irrational number •
Proof by contradiction •
Proof by cases •
Summation •
Disjunctive normal form
Set Theory
Set •
Element •
Empty set •
Universal set •
Subset •
Power set •
Cartesian product •
String •
Binary string •
Empty string •
Set operation •
Set identity •
Set proof
Functions
Algorithms
Relations
Number Theory
Induction
Combinatorics
Graph Theory
Graph •
Walk •
Subgraph •
Regular graph •
Complete graph •
Empty graph •
Cycle graph •
Hypercube graph •
Bipartite graph •
Component •
Eulerian circuit •
Eulerian trail •
Hamiltonian cycle •
Hamiltonian path •
Tree •
Huffman tree •
Substring •
Forest •
Path graph •
Star •
Spanning tree •
Weighted graph •
Minimum spanning tree •
Greedy algorithm •
Prim's algorithm
Recursion