Eulerian trail
An Eulerian trail is a walk that uses each edge in a connected graph exactly once. Not to be confused with an Eulerian circuit, which has the added requirement that it must loop back to the starting vertex. By contrast, an Eulerian trail must not loop back to the starting vertex. Otherwise, it'd be an Eulerian circuit instead.
A graph has an Eulerian trail if and only if it is a single connected component and exactly \(2\) of its vertices have odd degree. Those \(2\) vertices with odd degree will be where the Eulerian trail starts and ends.
Logic & Proofs
Integer •
Rational number •
Inequality •
Real number •
Theorem •
Proof •
Statement •
Proof by exhaustion •
Universal generalization •
Counterexample •
Existence proof •
Existential instantiation •
Axiom •
Logic •
Truth •
Proposition •
Compound proposition •
Logical operation •
Logical equivalence •
Tautology •
Contradiction •
Logic law •
Predicate •
Domain •
Quantifier •
Argument •
Rule of inference •
Logical proof •
Direct proof •
Proof by contrapositive •
Irrational number •
Proof by contradiction •
Proof by cases •
Summation •
Disjunctive normal form
Set Theory
Set •
Element •
Empty set •
Universal set •
Subset •
Power set •
Cartesian product •
String •
Binary string •
Empty string •
Set operation •
Set identity •
Set proof
Functions
Algorithms
Relations
Number Theory
Induction
Combinatorics
Graph Theory
Graph •
Walk •
Subgraph •
Regular graph •
Complete graph •
Empty graph •
Cycle graph •
Hypercube graph •
Bipartite graph •
Component •
Eulerian circuit •
Eulerian trail •
Hamiltonian cycle •
Hamiltonian path •
Tree •
Huffman tree •
Substring •
Forest •
Path graph •
Star •
Spanning tree •
Weighted graph •
Minimum spanning tree •
Greedy algorithm •
Prim's algorithm
Recursion